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Abstract—Model Predictive Control (MPC) has recently found wide acceptance in industrial applications, but its
potential has been much impeded by linear models due to the lack of a similarly accepted nonlinear modeling or data-
based technique. Aimed at solving this problem, the paper addresses three issues: (i) extending second-order Volterra
nonlinear MPC (NMPC) to higher-order for improved prediction and control; (ii) formulating NMPC directly with
plant data without needing for parametric modeling, which has hindered the progress of NMPC; and (jii) incorporating
an error estimator directly in the formulation and hence eliminating the need for a nonlinear state observer. Following
analysis of NMPC objectives and existing solutions, nonparametric NMPC is derived in discrete-time using multi-
dimensional convolution between plant data and \olterra kernel measurements. This approach is validated against the
benchmark van de Vusse nonlinear process control problem and is applied to an industrial polymerization process by
using Volterra kernels of up to the third order. Results show that the nonparametric approach is very efficient and
effective and considerably outperforms existing methods, while retaining the original data-based spirit and character-
istics of linear MPC.
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INTRODUCTION and neural networks [Saintdonat et al., 1991]. In a bid to achieve
improved performance, however, these approaches sacrifice the sim-
Model Predictive Control (MPC) represents a class of controlplicity, accuracy and characteristics arising from process 1/O data
schemes where the control signal generation involves the on-linfHenson, 1998]. This limits the range of industrial applications, as
use of a parametric or a nonparametric model of the plant. Majothese models are often difficult and inaccurate to obtain in practice
design techniques of MPC include Model Algorithm Control, Dy- [Pearson, 2002; Tan and Li, 2002].
namic Matrix Control, Internal Model Control and Generalized Pre- This has stimulated work on formulating MPC for use with a
dictive Control, etc. [Garcia et al., 1989]. The underlying strategy ofnonparametric Wiener model [Norquay et al., 1998; Jeong et al.,
MPC is, at any given time, to solve on-line a receding open-loop2001] and (its more practical version) Volterra model [Doyle I et
optimal control problem over a finite time horizon, where only the al., 1995; Genceli and Nikolaou, 1995; Maner et al., 1996] and on
first control of the resulting control sequence is actually implementedvolterra modeling [Kashiwagi and Sun, 1995; Kashiwagi and Rong,
on the plant. MPC algorithms are very intuitive and easy to under2002; Pearson, 2002]. A potential advantage of using a nonpara-
stand, and practical constraints can often be included in the on-linenetric model is that it can yield nonlinear MPC (NMPC) directly
open-oop algorithm [Mayne et al., 2000]. MPC has received world-from process I/O data [Kashiwagi et al., 1998]. However, methods
wide attention because it is straightforward to implement in indus-developed elsewhere require a first-principles model as so to derive
trial applications, particularly in chemical processes, where the dya second-order Volterra model analytically from the bi-linearized
namics is relatively slow and can hence accommodate on-line optfundamental model [Doyle il et al., 1995; Genceli and Nikolaou,
mization easily [Garcia et al., 1989]. 1995; Maner et al., 1996]. Hence, the original limitation on the range
However, much of the work has been confined to a linear con-of applications still remains. Further, these NMPC methods are so
trol strategy, based on a linear model in predicting future values ofar limited to one nonlinear kernel orilg, up to the second-order
the plant response [Doyle Il et al., 1995; Henson, 1998]. Since severdolterra kernels may be obtained and utilized. Hence, the fuller po-
nonlinearity often exists in an industrial process that can hardly béential of NMPC remains yet to be realized.
ignored in practice, higher control performance can only be achieved Recently, progress on \olterra modeling with a high degree of ac-
through using a nonlinear model [Pearson, 2002], including poly-curacy has been made at Kashiwagi Laboratory, Kumamoto Uni-
nomial ARMA model [Hernansez and Arkun, 1993], bilinear mod- versity, using \olterra kernels of up to the third order which can
el [Yeo and Williams, 1987], combined ARMA-Hammerstein model now be measured easily by perturbing the plant with a pseudoran-
[Fruzzetti et al., 1997], extended Kalman filter [Ahn et al., 1999] dom M-sequence signal that provides enough excitation and yet is
acceptable in an industrial situation [Kashiwagi and Sun, 1995; Kash-
iwagi, 1996]. This progress permits \Volterra NMPC schemes to be
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Fig. 1. Model predictive control framework.

ywu(t) = 3 g*u(t) =g*g*4(t) ©)
\olterra methodology, as reported in this paper. h
In the next section, objectives and solutions of NMPC are firstFrom this and Eq. (8),
analyzed, followed by time-domain formulation using multi-dimen- 3 _ -
sional convolution with Volterra kernels. For this, M-sequence based e(O=€(0)~n®O)- OO =)-g"q" 50 (10)
high-order Volterra identification techniques are detailed in SectionThe objective of Eq. (4) is therefore strictly met if
3. Case studies are reported in Section 4 and conclusions are drawn

= Soction 5. @arE0=60. V&0 (11)
i.e, if an exact inverse controll@=G™ is found [Doyle Il et al.,
NONPARAMETRIC NMPC 1995].
However, obtaining a strictly zero J of Eq. (4) or strictly satisfy-
1. Design Objective and Exact Solution ing Eq. (11) for an exact inverse would be impossible in practice,

Refer to Fig. 1 for notations in a general framework of model- as otherwise the controller ‘gain’ would, under constraints, need to
based control. The pre-filtéroutside the loop is for robust consid- be infinite for all frequency and time [Li et al., 2002]. This is also
erations in model-following and is often a unity-gain first-order low- because an exact inverse implies that the MPC will reduce to open-
pass with a relatively small time-constant or a critically dampedloop control in effect, which in turn cannot guarantee Eq. (11) or
second-order filter with a relatively high natural frequency. The pro-Eq. (4). Such a realization can lead to steady-state offsets if a dis-
cessP is modeled bys. The controlleiQ generates a control se-  turbance d(t) or estimation error n(t) exists [Genceli and Nikolaou,
guence u through observed plant output y and output predicted b$995; Henson, 1998].

G. The estimator block will be interpreted in Section 2.2. To resolve this problem, Doyle Ill et al. [1995] have decomposed

Suppose tha® has a fading memory, as indeed found in many G into degree-1 and degree-2 \blterra componenanGG (Fig.
industrial processes. Then its output can be represented by the Vol), and derived a ‘generalized inverse’ based on the ‘left inverse’ of
erra series as a temporal extension of the Taylor series expansidine degree-1 component. Their Volterra NMPC framework devel-

[Boyd and Chua, 1985], as given by oped is in a second-order analytic domain, as it needs an analytical
. \olterra model and this can only be identified up to the second or-
y =y I: I: I: p(T, Tpy... THU(t —T,)...u(t—7,)dT, der via the bilinear Carlemann ‘linearization’ applied to a first-princi-

ples model. This means that their NMPC controller offers only one

...dr+d(1) @) . o .
nonlinear kernel and also loses the ease of realization present in the

where pis thei-th order \Volterra kernel, ardimensional impulse  data-based linear MPC.

response of the nonlinear process. This equation can be compactly Further, this treatment still does not solve the offset and robust-

rewritten as [Doyle lll et al., 1995] ness problem. Unfortunately, a well-developed theory for nonlin-
. ear state observers to combat this is unavailable [Henson, 1998].
y(t) =Zy("(t) +d(t) 2 While this issue remains unaddressed in the main derivations, Doyle
i=1

Il et al. [1995] in their case studies have intuitively augmented the
controller with the pre-filteF, by moving it inside the loop to pre-
vent an exact inverse. Clearly, this adds complexity to controller syn-
thesis and revolts the rigor of their prior theoretical derivations. We
shall show in the following section that this arrangement is unnec-
essary and the offset problem will be solved neatly by using a non-
parametric formulation.

=3 pru®) +d(y) ©

where Y(t) is the degreeVolterra contribution to the overall output
and * denotesdimensional convolution.
Similar to any other control schemes, the design objective;d: R

R’,is to find &Q such that 2. Nonparametric Formulation
J=mine(t) @ To relieve application engineers from needing to obtain, and lin-
¢ earize, a first-principle based nonlinear model, NMPC is to be for-
supject to constraints imposed upon by saturations of actuators ang jjated here by using the nonparametric model given by Eq. (10).
their change rates: Requiring only a modest computational power in the realization
Ui SUS Uy (5) and not needing an on-line Runge-Kutta solver (as does the analyt-

ical method by Maner et §1996]), this should be more suitable
for computer implementation and for retaining the discrete-time
where characteristics of linear MPC. Further, a third or higher-order \olt-

AUy, SAUBSAU,, (6)
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A The resultant nonlinear controller is asymptotically stable with zero
offsets from set-point R, if the uncertainty and its rate of change

> are bounded and the end-conditigrg)=R is met.

Proof: Eq. (13) is equivalent to

Past Future

R

Set point . . .
Yo(tHI)-yut+H)=yO-yu®, ViO{L L+1, ..., L+P-1} (15)

This implies that the modeling error y(),(t) estimated from the

, coincidence nonparametric \olterra model is held constant throughout the pre-
d horizon diction horizon by a ‘zero-order estimator’. Denote this amount of
output y(t) unmeasured state variables by n(t) and error-correct the set-point to
-7 VR(t+H)—-n(®)=&(t+)). This agrees with Fig. 1 for the linear case. There-

ut) fore, the normed quantity in Eq. (14) evaluates to

imput [ M1 T Vet =0 Y]Vt =) -yt (16)

control  horizon Time and is hence the same as that in Eq. (12). <ged>.

; t_"_ n t-:-L t+LI+P-1 > Note that hereyft) can be estimatel t=0 from convolution
between u(t) and the \olterra kernels, given the assumption that

Fig. 2. General principle of discrete-time MPC. plantP has a fading memory and hence the \olterra model con-
verges [Boyd and Chua, 1985]. While Genceli and Nikolaou have
shown that prediction using a second-order \blterra model will meet

erra controller formulated in this way does not add more structurathe sufficient condition for robust tracking with zero offsets [Genceli

complications to a second-order one. and Nikolaou, 1995; Henson, 1998], a third-order one will further

Discrete-time formulation of MPC can be illustrated as shownreduce the estimation error (as we shall see in Section 3). Hence

in Fig. 2 [Kashiwagi et al., 1998]. It requires that an ‘open-loop’ the theorem proves following their derivations [Genceli and Nikolaou,

optimization problem be solved on-line only over a finite predic- 1995; Henson, 1998].

tion horizon P for a finite control horizon M. Within these receding  The discrete-time \olterra model allows a rigorous retention of

horizons, the objective of Eq. (4) becomes the original characteristics and spirit of linear MPC. The theorem

signifies that the control sequence can be optimized such,that y

tracksé(t) for an implicit inverse within the finite horizons, instead

) o o ] . of mathematically formulating y(t) to track($ V't. To further re-

where 1>1 is the minimum prediction step desired and e(t#jlD) duce the estimation error and improve robustness, the ‘hard-com-

{L, L+1, ..., L+P-1}is estimated from the model and outputin-  mang of a set-point change can be replaced by a ‘soft-command’
formation available at time t. Here the metric norm is evaluated W'thTrajectory y(0) for the process to follow, provideg(s)=R [Li et

in the finite discrete set {L, L+1, ..., L+F} and may be either al., 2002].

J;= min Je(tHp)l " (12)
j=L

WL, . u(t+MI)

L., L., L., mixed, weighted or any other norm providgdah be Without loss of generality, consider a first-order low-pass pre-filter
optimized on-line. with unity-gain
The open-loop offset problem encountered in an analytical inverse
can be handled in discrete-time by designing an error estimator, which F(s) -1 a7
will give the controller an implicit integral action [Henson, 1998]. 1+1s

As we shall see in the sequel, this is naturally and elegantly realizeghe reference trajectory in the continuous domain is given by
without needing full-state feedback, given an I/O based nonpara-

metric, as opposed to an analytic, model. The simplest error esti- Y«0=R(1-€") (18)
mator is a zero-order ories, the discrepancy between the actual |t is not difficult to derive its discrete-time version in difference equa-
and modeled output at time t is used throughout the prediction hoggp,
rizon [Henson, 1998]. Genceli and Nikolaou [1995] have shown
that, using such an error estimator, the closed-loop system with a Y«{t+1)=ay:0+(1-a)R 9
\olterra controller is asymptotically stable with zero offsets if the where, with a given sampling interval T,
uncertainty and its rate of change are bounded and the end-condi-
tion y,,(«)=R is met. Here we extend this result to the generic MPC  , —;_T (20)
framework of Fig. 1. T

Theorem: The linear MPC framework of Fig. 1 is directly appli- lterating the first-order equation yields
cable to nonlinear MPC in the time-domain with a \olterra predictor

=Y Oy -Yu®], VIO L+L, .. L+P-1}  (13) Ye(tH)=aly(O+(1-a)R 1)
H(LH)[t)= Hym(t+) = Yu(D], ,L+1, ..., L+P- . . . ' .
sl " J for calculating the reference trajectory j steps ahead [Kashiwagi et
and objective al,, 1998].

Since the control signal will go through a D/A converter, the re-

- . +i) — +i L+P-1
% min ol S 7yl J)",=L (14) solution of u will be finite. Hence we can search for a discrete value

WL, u(t+MI)
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of Au for each element (R [Kashiwagi et al., 1998]. A simple  (24) holds. This property is called t8&ift and Add Propertpf
optimization algorithm that accommodates constraints easily is athe M-sequence [Kashiwagi, 1996]. Assume that the total number
a posteriori hill-cimbing algorithm,i.e,, hill-climbing guided by of those groups isrtthat is, j=1, 2, ..., th Then Eq. (23) becomes
trail-and-error [Li et al., 2002]. Compared with conventional non- unity when

linear programming, aa posteriorisearch takes a longer time, but I R 0
is much more straightforward to implement for any objective met- ™ © ki =T ks T 7y 25)
ric under any constraints [Li et al., 2002; Tan and Li, 2002]. Therefore Eq. (22) is approximated by
Now the only task left is to obtain Volterra kernels in Eq. (10)
fori=1, 2 and 3, by using a pseudorandom sequence that provides ¢, () = ZZg (r-kY, t-kY, ..., 1k (26)
the plant with enough excitation and yet are acceptable in an indus- e
trial situation [Kashiwagi, 1996; Pearson, 2002]. Since (1, T2, v T) is zero when any df is smaller than zero,
each 7~ KV, ... T- k,,) in Eq (26) appears in the cross-correla-
THIRD-ORDER VOLTERRA MODEL tion functiong,(1) whenr> kY.
In order to obtain \blterra kernels from Eq. (ZBﬂ must

Consider the identification of the nonlinear process of Eq. (1). Inappear sufficiently apart from one another. For this to be realized, we
order to identify \olterra kernelgg, 1, ...), an M-sequence [Kash-  should select suitable M-sequences that set the cross-sections of the
iwagi, 1996] is used to excite the nonlinear system with acceptabl&blterra kernels sufficiently apart from one another. Some appro-
amplitude. The resultant cross-correlation funciiggr) between priate M-sequences are given in Kashiwagi [Kashiwagi and Sun,
the input u(t) and the output y(t) can be written as [Kashiwagi, 1996]1995; Kashiwagi, 1996].

When measuring Volterra kernels up to the third order, the cross-

@(1) =u(t—7)y(t) correlation functior,(7) becomes
:Z mpl(.[-li.[zw".[—l) me
2, @,(1) =Btg,(7) +F(D) +2(80°F 6,(T =k, T=Kz)
u(t—-nu(t—1)...u(t-1)dr,...dr, (22 =
where™ denotes time average. Usually the moment of u(t) is difficult +6(At)3§ Go(T—ko, Tk, T-k2) @7
=1

to obtain, but with an M-sequence, thth moment of u(t) yields
easily. Here, the (i+1)th moment of the input M-sequence u(t) iswhere
given by [Kashiwagi, 1996; Kashiwagi and Rong, 2002]

| F(0) =(a0°g(1,1,7) +3(80° Y 9(7,6, 0 (28)
u(t—Du(t—tHu(t—1,)...u(t—1) =% 1 (for certaint) 23 i
O0-V¥N (otherwise andAt is the time increment or sampling period. To generalize, we
where N is the period of the M-sequence. For an M-sequence er]lave, 3 .
the degree greater than 16, 1/N is in the order belovHence @,(1) =Dtgy(1) +F(1) + S i1 (A0 Y g (1KY, .., 1=k (29)
Eq. (23) can be approximated as a set of impulses which appear at =2 =1
certaints. Here F({) is a function ofr and is the sum of the odd order \olt-
Let us consider measurlng i \olterra kernel. Then for inte-  erra kernels when some of its arguments are equal. SiaEpF(
gerski <kp<...,kij-, , there exists a unigk  (mod N) such that pears together with,@) in an overlapped manner,7-nust be
[Kashiwagi and Sun, 1995] calculated from the odd order \blterra kermnels and be subtracted
u(Ou(t+kD)... u(t k) =u(t+k%) 24 from the measured,(@) in order to obtain an accuratgy Fol-

lowing this, a \lterra model can be identified for use with Eq. (13)
where j is the number of the group,(k,, ..., K -,) for which Eq. [Kashiwagi et al., 1998].

CFF dxy(T) Degree= 13 fx= 36073
HI= 73 KI=1T5 T= 1 DT=0.1
9(1) 92(11 — 73,79 — 75) g2(71 — 146, 75 — 150)
Pl P Z

M pemsbonsbasombonebl L1 ....,..,“..M,

20 40 60 80 100 120 140 160 180 200

Fig. 3. An example of crosscorrelation functiong, ().

March, 2004



Nonparametric Nonlinear Model Predictive Control 333

92(7—17 72)

(buy('r)
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go(T — hiy T — ki)

— T — >

Fig. 4. Reconstruction of second Volterra kernel.

To illustrate this method, an example is shown below. When we go¢1,2)
use M-sequence of 13 degree with the generating characteristic pol ,
nomial f(x)=36073 in octal notation, we can get, by computer search gf

thosek” in Eq. (24) as
ks, =73, Ky =75,k5; =146 K; =150,...
That is,

@ (D=0tg (D)+2(At)Hg (T-73At, T-75A1)
+0,(T-1460t, T-15QAt)+...}+...

where Ff) and third order kernel are omitted for simplicity. Fig. 3

0.6
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0.2
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.08 L L I I L
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Fig. 5. The F-order Volterra kernel of the van de Vusse reactor.
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\
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shows an example qf,(1) actually calculated for some nonlinear Fig. 6. The 2*-order Volterra kernel of the reactor.
system, where two cross-sections of second \olterra kernel can be

seen. Since M-sequence is selected in order for those kernels to

separated from each other, we can cut those kernel sliceg,fom

and reconstruct the second order kernel as shown in Fig. 4. Whe

third order kernel exists, we reconstru€t,g v, T,) first, calculate

F(7) in Eq. (18) and subtract #from the part of crosscorrelation

function in the neighborhood of origin to obtai(ry
CASE STUDIES

1. Benchmark van de Vusse Reactor Problem

The van de Vusse reactor is studied in the second example ¢

he
93(t1,12,t3) t3=1
0.2

0.15
0.1
0.05

0

-0.05
0.1
-0.15

Doyle Il et al. [1995]. This is an isothermal continuous mixed tank
reactor. Control of two density components is carried out by adjustgig. 7. The 3'-order Volterra kernel (t,=1) of the reactor.
ing the amount of input flow. The process is known to be highly

nonlinear and is used in nonlinear process control as a benchmark

problem.
Denote the two component concentrations, @ %, and the

Using the method presented in Section 3 to identify the Volterra
kernels, the results obtained are shown in Figs. 5-7. The M-sequence

amount of input flowing as u. Under the same condition as that irused here has an amplitude of 0.025 and a characteristic polyno-

Doyle lll et al. [1995], the process is modeled by

0=2=-50x%-10X+(10-x,)u

Odx, =50x%—-100%—x,u (20)

mial f(x)=260577. With the measured \olterra kernglsig and

0., responses of the process can be estimated. In Fig. 8, these are
validated against the actual output from Eq. (30) with respect to
two step inputs. When a first and a second-order Volterra models
are used, the results are almost the same as those in Doyle Il et al.
[1995] (Figs. 9 and 10). However, it is clear that a third-order mod-

el significantly outperforms both.

Korean J. Chem. Eng.(Vol. 21, No. 2)
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Fig. 8. Actual and modeled step responses of the van de Vusse re-
actor (solid: actual output; +: linear model; dotted: up to
the 2%order Volterra kernels; dashed: up to the 3-order
kernels).

y®

L I L L I L !
30 40 50 60 70 80 920
t

100

Fig. 9. NMPC performance comparison on the van de Vusse reac-
tor (solid: linear model; dotted: 2°-order Volterra model,
dashed: 3-order model).

Using the measured Volterra kernelsgyg and g, nonparamet-
ric NMPC is realized fon=0.5 and M=P=10. Here, for compari-
son on the same ground, a quadratic objectiyexdtm) is used,

H. Kashiwagi and Y. Li

5 T T T T T T T T T
1st order Volterra Kernel ——

0F

5 4

10 4

g1()

15 4

-20 4

25 | i

=30 B

-35

I ! ! I I I I I L
] 10 20 30 40 50 60 70 80 20
t

Fig. 10. Obtained first-order Volterra kernel of the Mitsubishi poly-
merization process.

100

from 1.12 to 1.0. We see that, while all nonparametric NMPC con-
trollers offer zero-offsets, the third-order one offers superior perfor-
mance. It is not only improved over the second-order controller,
but this is also achieved without requiring an analytical model, which
is needed for a parametric method [Doyle Ill et al., 1995].
2. Application to a Polymerization Process

Following the benchmark tests, the developed higher perform-
ing and easier to implement NMPC method is applied to a process
problem of Mitsubishi Chemical Corp. Their chemical reactor is
described by the differential equation

E% =_|_ipl(—x1+Kp1u1)
E% =75 (Kpaxt x: *Kpat) o
ay =x,
with initial conditions
0x,=0.02 kgh*, x,=5.0 kgcm® 32)

O _ _
gJu,=0.05 kgh*, u,=3195 kgh'

where x is the consumption velocity of catalyst,ix gas density,
U, is the supply quantity of catalys,isithe supply quantity of poly-
ethylene, and TpTp, Kp, Kp, and Kp are constants. Here the
control input to optimize is,@nd the output to control is, xequired
to follow a step change in reference to R=10 kg @rom 5.

For this, an M-sequence, denotedioy with amplitude +0.025
and characteristic polynomial f(X)=260577 in octal notation is applied
to the reactor, with a sampling period of 0.3 h. Taking cross-correla-
tions betweeu andAy, Volterra kernels are measured. These are
shown in Figs. 10-12. In Figs. 13-15, comparison is made between
the actual output and the Volterra estimates responding to a sinuso-
idal input. We see again that the third-order model offers the best
estimation which should be sufficient enough to preclude the need

whilst any objective (including non-differentiable ones) can be usedor a further higher-order model.

with ana-posteriorioptimizer [Li et al., 2002; Tan and Li, 2002].

Then, using the measured \blterra kernels, NMPC is realized with

The result of the NMPC is shown in Fig. 9 for a set-point changethe same settings in the van de Vusse case. The search for the con-
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2nd order Volterra Kernel — 4 T T T T T
Actual output —
92(11.12) Output by use of up to 2nd order Volterra Kernels <

250
200
150
100 - |l
so 1]
o

-50
50

t1 40

50 0

Fig. 11. Obtained second-order Volterra kernel of the process.

L L
0 50 100 150 200 250 300

t
3rd order Volterra Kemel ——

Fig. 14. Comparison between the actual output and the output es-
timated from a second-order model.

4 T T T

Actual output —
Output by use of up to 3rd order Volterra Kernels <

4 T T T T T

Actual output ——
Output by use of 1st order Volterra Kernel <

2 | 1 I
0 50 100 150 200 250 300

Fig. 15. Comparison between the actual output and the output es-
timated from a third-order model.

T T T
Output by use of 1st & 2nd & 3rd order Volterra Kernels of Nonlinear-model o
Output by use of 1st & 2nd order Volterra Kernels of Nonlinear-model +
Output by use of Linear-model ----- i

Fig. 13. Comparison between the actual output and the output es-
timated from a first-order Volterra model of the Mitsub- 7L
ishi polymerization process.

trol sequence is carried out within the range of +0.05 with 2 0.001in- °¢ % 100 150 200

crement. Figs. 16 and 17 present the controlled performance and ca t

trol signals. From the resilits, we see that the nonparametric NMPig 16, performance of the NMPC controllers formulated using
formulated from the third-order Volterra model offers the best closed- the first, second and third-order Volterra models for the
loop performance. Mitsubishi polymerization process.

Korean J. Chem. Eng.(Vol. 21, No. 2)
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T T T T T T T T
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